Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20714, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001117

RESUMO

Trimethylsilyl cellulose (TMSC) was employed as the coating matrix for the application of zinc oxide nanoparticles (ZnO) onto paper surfaces and the protections of ZnO/TMSC coating against UV-induced damages and fungal spoilage were evaluated. Filter papers were immersed in 2% w/v TMSC solution loaded with ZnO and air-dried. Three ZnO/TMSC suspensions were prepared with 0.1, 0.5, and 1% w/v ZnO NPs. The presences of ZnO/TMSC protective layers were confirmed with ATR-IR spectroscopy. The coated papers exhibited high surface hydrophobicities. After the coated papers were subject to 365-nm UV irradiation at 400 W for 3 h, the contact angles dramatically dropped. The trimethylsilyl (TMS) groups exposed on the surface formed a moisture barrier and were partially removed on UV exposure. ATR-IR revealed that more TMS groups were removed in the protective layer with no ZnO. UV-irradiated papers turned yellow and papers protected with 1% ZnO/TMSC exhibited significantly lower color changes than that of the uncoated one. Compared to the TMSC-coated paper, the addition of ZnO resulted in a significant reduction in tensile strength at maximum. However, after UV irradiation, significant increases in both the strain at break and strength at maximum were only observed in 1% ZnO/TMSC-protected papers. Regarding their anti-fungal properties, the 1% ZnO/TMSC films were effective in growth inhibitions of Aspergillus sp. and Penicillium sp. on the nonirradiated papers. Despite being hydrophilic after UV-irradiation, growths of the molds were severely suppressed on the UV-irradiated paper.


Assuntos
Nanopartículas , Óxido de Zinco , Celulose/farmacologia , Celulose/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas/química , Resistência à Tração , Interações Hidrofóbicas e Hidrofílicas
2.
Int J Biol Macromol ; 220: 1480-1492, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126808

RESUMO

Microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (OPEFB) waste by integrated chemical treatments of delignification, bleaching, and acidic hydrolysis. The obtained MCC (OPMC) and tricresyl phosphate (TCP) were used as additives for polylactide (PLA) composites. The influences of OPMC and TCP contents, separately and in combination, were evaluated on the properties of the composites. Characterization studies confirmed the successful extraction of OPMC from OPEFB waste. With regard to the properties of the PLA composite, the appropriate content of OPMC should be 5 phr. The good distribution of OPMC in the polymer matrix changed the failure behavior of the composite from brittle to ductile. All the PLA composites with TCP and OPMC showed flame inhibition and retarded ignition. The synergistic effect of TCP and OPMC resulted in outstanding improvement of impact strength and flame retardancy of composites. The impact toughness of PT10M5 increased to about 218.4 % and 72.3 % that of neat PLA and PT0M5, respectively. Moreover, PT10M5 achieved V-0 rating with high LOI (38.5 %). All these characteristics promise extended applications for PLA composite in bio, circular, and green (BCG) economies and electronics industries.


Assuntos
Frutas , Tritolil Fosfatos , Celulose , Frutas/química , Óleo de Palmeira , Poliésteres/análise , Polímeros/química , Tritolil Fosfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...